首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   2篇
  2012年   18篇
  2011年   3篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1979年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
81.
82.
Voice is the essential part of singing and speech communication. Voice disorders significantly affect the quality of life. The viscoelastic mechanical properties of the vocal fold mucosa determine the characteristics of the vocal folds oscillations, and thereby voice quality. In the present study, a non-invasive method was developed to determine the shear modulus of human vocal fold tissue in vivo via measurements of the mucosal wave propagation speed during phonation. Images of four human subjects' vocal folds were captured using high speed digital imaging (HSDI) and magnetic resonance imaging (MRI) for different phonation pitches, specifically fundamental frequencies between 110 and 440 Hz. The MRI images were used to obtain the morphometric dimensions of each subject's vocal folds in order to determine the pixel size in the high-speed images. The mucosal wave propagation speed was determined for each subject and at each pitch value using an automated image processing algorithm. The transverse shear modulus of the vocal fold mucosa was then calculated from a surface (Rayleigh) wave propagation dispersion equation using the measured wave speeds. It was found that the mucosal wave propagation speed and therefore the shear modulus of the vocal fold tissue were generally greater at higher pitches. The results were in good agreement with those from other studies obtained via in vitro measurements, thereby supporting the validity of the proposed measurement method. This method offers the potential for in vivo clinical assessments of vocal folds viscoelasticity from HSDI.  相似文献   
83.
Increased atmospheric CO2 and gamma irradiation have a significant impact on the plant photosynthetic apparatus and organic compound production. In this study, we evaluated the effect of elevated CO2 on the photosynthetic efficiency and production of defensive secondary metabolites (flavonoids) induced by gamma irradiation as a physical elicitor in Centella asiatica. Irradiated and non-irradiated 10-week-old plants of C. asiatica were exposed to 400 and 800 μmol mol?1 of atmospheric CO2 in growth chambers for 2 h every day until six weeks. A CO2-enriched atmosphere initially improved the photosynthetic efficiency and ameliorated the detrimental impact of gamma irradiation on the photosynthetic apparatus, increasing carbon allocation into the flavonoid pathway. Elevated CO2 combined with gamma irradiation resulted in the highest concentration of flavonoids in C. asiatica tissues compared with the other treatments. There was an enhancement in rutin (2.49 fold), naringin (2.15 fold), fisetin (4.07 fold), and morin (4.62 fold) with rising CO2 concentrations from 400 to 800 μmol mol?1 in the irradiated plants. With increasing CO2 concentration, the compensation point and the respiration declined, whereas the apparent quantum yield and the maximum net photosynthesis (A max) rate increased. The efficiency of photosystem II (PSII) was improved in the irradiated plants grown under high concentrations of CO2. The total carbohydrate concentration reached the maximum value at the highest level of CO2, followed by gamma irradiation combined with the highest level of CO2. Irradiated plants of C. asiatica grown under elevated CO2 could be superior to non-irradiated plants due to increased carbon availability both for the flavonoid biosynthesis and for the photosynthetic pathway.  相似文献   
84.
Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems.  相似文献   
85.

Dechlorination patterns of three tetrachlorobenzene isomers, 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-TeCB, were studied in anoxic microcosms derived from contaminated harbor sludge. The removal of doubly, singly, and un-flanked chlorine atoms was noted in 1,2,3,4- and 1,2,3,5-TeCB fed microcosms, whereas only singly flanked chlorine was removed in 1,2,4,5-TeCB microcosms. The thermodynamically more favorable reactions were selectively followed by the enriched cultures with di- and/or mono-chlorobenzene as the main end products of the reductive dechlorination of all three isomers. Based on quantitative PCR analysis targeting 16S rRNA genes of known organohalide-respiring bacteria, the growth of Dehalococcoides was found to be associated with the reductive dechlorination of all three isomers, while growth of Dehalobacter, another known TeCB dechlorinator, was only observed in one 1,2,3,5-TeCB enriched microcosm among biological triplicates. Numbers of Desulfitobacterium and Geobacter as facultative dechlorinators were rather stable suggesting that they were not (directly) involved in the observed TeCB dechlorination. Bacterial community profiling suggested bacteria belonging to the phylum Bacteroidetes and the order Clostridiales as well as sulfate-reducing members of the class Deltaproteobacteria as putative stimulating guilds that provide electron donor and/or organic cofactors to fastidious dechlorinators. Our results provide a better understanding of thermodynamically preferred TeCB dechlorinating pathways in harbor environments and microbial guilds enriched and active in anoxic TeCB dechlorinating microcosms.

  相似文献   
86.
The DNA base compositions and photoreactivable sectors of six species of Hansenula were determined. The G+C ratios revealed two groups; the first had values of 38 to 44% and the second had lower values of 32–36%. Hansenula muscicola could not repair the UV-induced damage; whereas, H. dryadoides, H. lynferdii, H. ofunaensis, H. philodendra and H. sydowiorum could do so.  相似文献   
87.
88.
Biodegradation - 2,4-Dichlorophenoxyacetic acid (2,4-D) is the third most applied pesticide in Brazil to control broadleaf weeds in crop cultivation and pastures. Due to 2,4-D’s high mobility...  相似文献   
89.
The protein ERp57 is a stress-responsive protein, mainly exists in the endoplasmic reticulum (ER), and a small amount in the cell membrane, cytoplasm, nucleus and mitochondria, which is involved in the signal transduction from the cell surface, the regulation process that occurs in the nucleus, and the formation of polymer protein complexes involved in DNA repair. Various degrees of ERp57 dysregulation has been observed in many types of non-communicable diseases especially in cancers. Previous studies showed that the expression of ERp57 could play a key role in occurrence and development of cancers such as breast cancer, gastric cancer, ovarian cancer, etc.; in addition, it has been suggested to play a pivotal role in disease progression of non-cancerous diseases such as neurodegeneration, liver disease, kidney disease, intestinal irritability syndrome and airway hypersensitivity. Thus, abnormal expression of ERp57 could be used as promising biomarker for cancer diagnosis and prognosis based on the previous studies. In this regard, current study was aimed to review the literature, which have been elucidate the role of ERp57 protein expression in both non-cancer and cancer disease. Overall, most studies have shown that inhibiting/knocking out of ERp57 could inhibit the cell proliferation and also induce apoptosis in both human cancerous and non-cancerous cells. Also, it has been suggested that the overexpression of ERp57 could intensify the cancer development. Therefore, it could be hypothesized that targeting of ERp57 might be a potential treatment in cancerous and non-cancerous diseases.  相似文献   
90.
We adapted and tested an innovative noncontact speckle contrast diffuse correlation tomography (scDCT) system for 3D imaging of cerebral blood flow (CBF) variations in perinatal disease models utilizing neonatal piglets, which closely resemble human neonates. CBF variations were concurrently measured by the scDCT and an established diffuse correlation spectroscopy (DCS) during global ischemia, intraventricular hemorrhage, and asphyxia; significant correlations were observed. Moreover, CBF variations associated reasonably with vital pathophysiological changes. In contrast to DCS measurements of mixed signals from local scalp, skull and brain, scDCT generates 3D images of CBF distributions at prescribed depths within the head, thus enabling specific determination of regional cerebral ischemia. With further optimization and validation in animals and human neonates, scDCT has the potential to be a noninvasive imaging tool for both basic neuroscience research in laboratories and clinical applications in neonatal intensive care units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号